ProJo4D: Progressive Joint Optimization for Sparse-View Inverse Physics Estimation

Daniel Rho1, Jun Myeong Choi1, Biswadip Dey2, Roni Sengupta1

1University of North Carolina at Chapel Hill, 2Meta Reality Labs

Paper
Sparse Multi-View Video
Ground Truth
ProJo4D
GIC
Spring-Gaus
Novel-view Rendering

We present ProJo4D, a progressive joint optimization framework for estimating 4D representation and physical parameters of deformable objects from sparse multi-view video. ProJo4D significantly outperforms state-of-the-art inverse physics estimation algorithms, Spring-Gaus and GIC, which perform sequential optimization of scene geometry and physical parameters.

Method

ProJo4D progressively grows the set of optimized variables—3D Gaussian parameters, deformation network, initial velocity, and material properties—across training stages to mitigate error propagation common in sequential frameworks like Spring-Gaus and GIC. The diagram illustrates the interdependencies among variables in the inverse physics estimation task, with colored dotted arrows indicating gradient flow during each optimization stage.

Results

Sparse-view results on the Spring-Gaus Dataset
Metrics (Table)
Method torus cross cream apple paste chess banana mean
CD ↓ Spring-Gaus 15.00 40.30 2.97 12.12 73.08 3.68 51.35 26.93
GIC 9.48 4.03 12.67 6.50 53.66 6.64 2.00 13.57
Ours 0.79 0.33 0.81 0.17 3.46 0.92 0.31 0.97
EMD ↓ Spring-Gaus 0.177 0.232 0.101 0.170 0.248 0.097 0.223 0.178
GIC 0.106 0.112 0.182 0.143 0.219 0.129 0.056 0.135
Ours 0.039 0.033 0.044 0.021 0.102 0.060 0.026 0.046
PSNR ↑ Spring-Gaus 13.01 11.24 14.62 17.03 10.94 13.85 15.79 13.78
GIC 15.18 21.89 13.53 19.19 12.68 14.83 23.22 17.22
Ours 19.87 28.76 20.08 28.75 16.76 17.90 27.24 22.77
SSIM ↑ Spring-Gaus 0.831 0.819 0.796 0.790 0.737 0.792 0.825 0.799
GIC 0.872 0.882 0.781 0.844 0.788 0.825 0.923 0.845
Ours 0.925 0.943 0.890 0.931 0.866 0.881 0.949 0.912
MAE log₁₀E ↓ GIC 0.0662 0.4524 1.7137 0.0508 0.0376 0.2323 0.0526 0.3722
Ours 0.0161 0.0867 0.0112 0.0345 0.0249 0.0929 0.0020 0.0383
MAE ν ↓ GIC 0.7093 0.1712 0.2167 0.2463 0.0799 0.0676 0.8656 0.3367
Ours 0.7333 0.0241 0.0247 0.0583 0.0896 0.0879 0.4736 0.2131
Visualizations (Videos)

All videos are rendered from novel views and present the full 30-frame sequence. Each model was trained on the first 20 frames of each 30-frame sequence.

Ground Truth

ProJo4D (Ours)

GIC

Spring-Gaus

Dense-view results on the Spring-Gaus Dataset
Metrics (Table)
Method torus cross cream apple paste chess banana mean
CD ↓ PAC-NeRF 2.47 3.87 2.21 4.69 37.70 8.20 66.43 17.94
Spring-Gaus 2.38 1.57 2.22 1.87 7.03 2.59 18.48 5.16
GIC 0.75 1.09 0.94 0.22 2.79 0.77 0.12 0.95
Ours 0.16 0.11 0.86 0.14 1.85 0.26 0.11 0.50
EMD ↓ PAC-NeRF 0.055 0.111 0.083 0.108 0.192 0.155 0.234 0.134
Spring-Gaus 0.087 0.051 0.094 0.076 0.126 0.095 0.135 0.095
GIC 0.034 0.058 0.050 0.030 0.096 0.059 0.017 0.049
Ours 0.024 0.017 0.044 0.018 0.064 0.029 0.019 0.031
PSNR ↑ PAC-NeRF 17.46 14.15 15.37 19.94 12.32 15.08 16.04 15.77
Spring-Gaus 16.83 16.93 15.42 21.55 14.71 16.08 17.89 17.06
GIC 20.24 30.51 19.15 26.89 16.31 18.44 29.29 22.98
Ours 25.75 37.54 21.04 36.83 20.84 23.88 29.44 27.90
SSIM ↑ PAC-NeRF 0.913 0.906 0.858 0.878 0.819 0.848 0.886 0.870
Spring-Gaus 0.919 0.940 0.862 0.902 0.872 0.881 0.904 0.897
GIC 0.942 0.939 0.909 0.948 0.894 0.912 0.964 0.930
Ours 0.966 0.980 0.921 0.983 0.922 0.948 0.965 0.955
MAE log₁₀E ↓ GIC 0.0039 0.1115 0.0074 0.0544 0.0474 0.5616 0.0572 0.1205
Ours 0.1258 0.0904 0.0040 0.0197 0.0679 0.1153 0.0355 0.0655
MAE ν ↓ GIC 0.0142 0.0171 0.0082 0.0205 0.0086 0.0480 0.1841 0.0430
Ours 0.0182 0.0570 0.0057 0.0060 0.0381 0.0880 0.0885 0.0431
Visualizations (Videos)

All videos present the full 30-frame sequence. Each models was trained on the first 20 frames of each 30-frame sequence.

Ground Truth

ProJo4D (Ours)

GIC

Spring-Gaus

Sparse-view results on the PAC-NeRF Dataset
Metrics (Table)
Elasticity Newtonian Non-Newtonian Plasticine Sand
CD ↓ GIC 5.512 ± 3.311 0.537 ± 0.315 0.689 ± 0.398 2.012 ± 1.797 20.262 ± 43.360
Ours 0.982 ± 0.350 0.349 ± 0.147 0.530 ± 0.269 1.022 ± 0.719 0.413 ± 0.201
EMD ↓ GIC 0.126 ± 0.041 0.103 ± 0.007 0.040 ± 0.007 0.062 ± 0.027 0.122 ± 0.162
Ours 0.041 ± 0.006 0.039 ± 0.004 0.038 ± 0.005 0.046 ± 0.011 0.042 ± 0.009
MAE v₀ ↓ GIC 0.008 ± 0.004 0.009 ± 0.004 0.015 ± 0.008 0.010 ± 0.005 0.007 ± 0.004
Ours 0.010 ± 0.006 0.005 ± 0.002 0.006 ± 0.003 0.009 ± 0.007 0.003 ± 0.002
MAE log₁₀(E) ↓ GIC 0.189 ± 0.217 N/A N/A 1.597 ± 1.150 N/A
Ours 0.087 ± 0.074 N/A N/A 0.892 ± 0.683 N/A
MAE ν ↓ GIC 0.123 ± 0.103 N/A N/A 0.134 ± 0.112 N/A
Ours 0.106 ± 0.097 N/A N/A 0.158 ± 0.078 N/A
MAE log₁₀(μ) ↓ GIC N/A 0.103 ± 0.125 0.869 ± 0.598 N/A N/A
Ours N/A 0.071 ± 0.069 0.937 ± 0.602 N/A N/A
MAE log₁₀(κ) ↓ GIC N/A 3.180 ± 1.085 0.725 ± 0.704 N/A N/A
Ours N/A 1.900 ± 1.347 0.722 ± 0.913 N/A N/A
MAE log₁₀(τY) ↓ GIC N/A N/A 0.069 ± 0.069 0.327 ± 0.365 N/A
Ours N/A N/A 0.032 ± 0.018 0.132 ± 0.172 N/A
MAE log₁₀(η) ↓ GIC N/A N/A 0.519 ± 0.264 N/A N/A
Ours N/A N/A 0.507 ± 0.252 N/A N/A
MAE θfric GIC N/A N/A N/A N/A 6.785 ± 8.458
Ours N/A N/A N/A N/A 0.903 ± 0.557
Visualizations (Videos)

All videos are rendered from novel views and present the full 14-frame sequence. Since this dataset is designed for physical parameter estimation, each model was trained on all 14 frames.

Sand

Ground Truth

ProJo4D (Ours)

GIC

Non-Newtonian
Plasticine
Elastic
Results on the Spring-Gaus Real-world Dataset
Metrics (Table)
bun burger dog pig potato mean
PSNR ↑ Spring-Gaus 26.79 35.13 30.31 31.95 28.96 30.63
GIC 31.96 35.41 31.26 35.38 34.63 33.73
Ours 32.14 38.55 34.65 38.35 39.33 36.60
SSIM ↑ Spring-Gaus 0.986 0.995 0.993 0.994 0.989 0.991
GIC 0.993 0.993 0.993 0.995 0.991 0.993
Ours 0.994 0.995 0.995 0.996 0.995 0.995
Visualizations (Videos)

All videos present the full 20-frame sequence. Each model was trained on the first 14 frames of each 20-frame sequence.

Bun

Ground Truth

ProJo4D (Ours)

GIC

Burger
Dog
Pig
Potato

Acknowledgment

This work was supported by a National Institute of Health (NIH) project #1R21EB035832 "Next-gen 3D Modeling of Endoscopy Videos".

BibTeX

@article{rho2025projo4d,
  title = {ProJo4D: Progressive Joint Optimization for Sparse-View Inverse Physics Estimation},
  author = {Daniel Rho and Jun Myeong Choi and Biswadip Dey and Roni Sengupta},
  journal={arXiv preprint arXiv:2506.05317},
  year={2025}
}